

Science and Technology for Tomorrow's Aerospace Force

Our Vision and Mission

AIR FORCE MISSION

To defend the United States through control and exploitation of air and space

AIR FORCE RESEARCH LABORATORY MISSION

Leading the discovery, development, and integration of affordable warfighting technologies for our aerospace forces

AIR FORCE RESEARCH LABORATORY VISION

We defend America by unleashing the power of innovative aerospace technology

Agenda

- Long Range Pay-off of S&T
- Update on AFRL
- Cutting Edge Technologies
- Closing Thoughts

Contributions From Past Investments



Predictions for the Future

Aerospace Vehicle

Mach 6 Global Reach
Strike Aircraft

Space Based Laser

Combined Aerospace Ops Center (CAOC) of the Future

USS Billy Mitchell

National Missile Defense

Agenda

Long Range Pay-off of S&T

- Update on AFRL
- Cutting Edge Technologies
- Closing Thoughts

1990 Reorganization of the Air Force Labs

Air Force Space Tech Ctr Kirtland AFB, NM

Astronautics Lab Weapons Lab Geophysics Lab

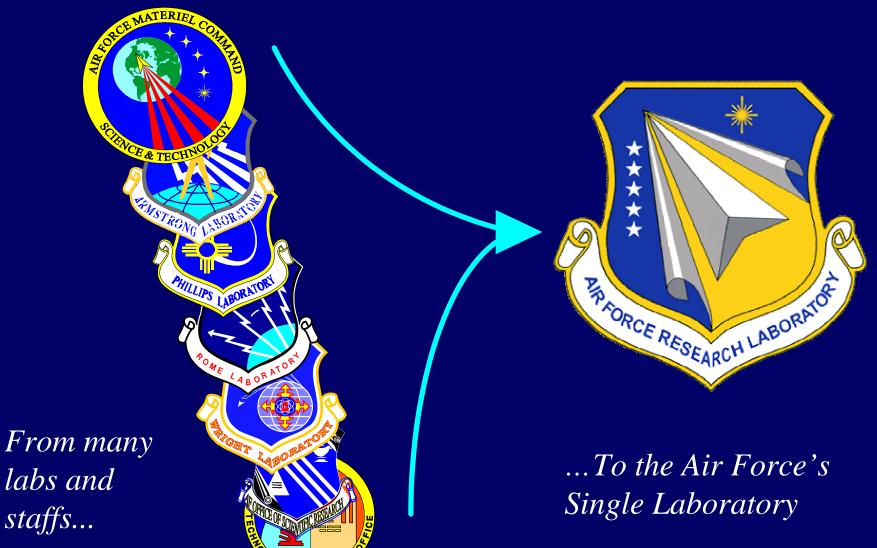
Wright R&D Center Wright-Patterson AFB, OH

Avionics Lab
Electronics Technology Lab
Flight Dynamics Lab
Materials Lab
Aero Propulsion & Power Lab
AF Armament Lab

Human Systems Division Brooks AFB, TX

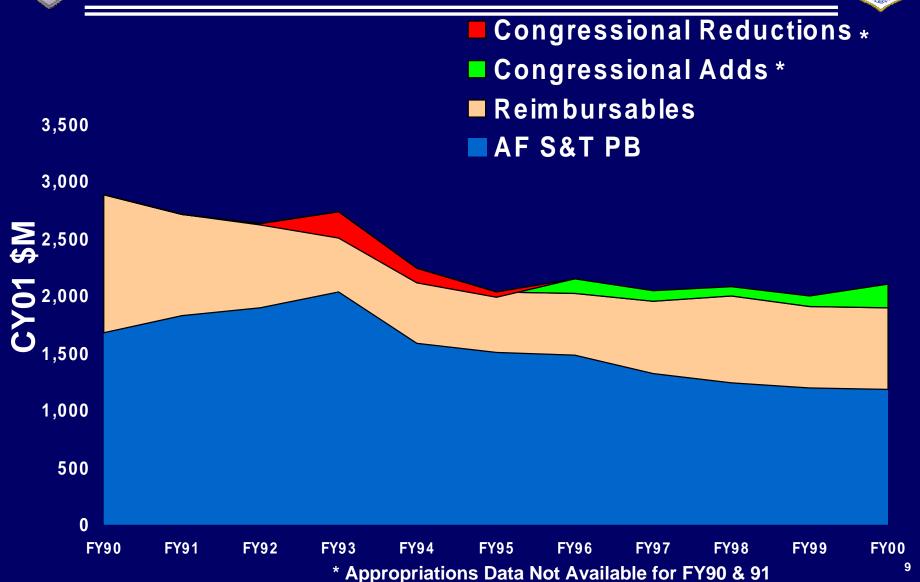
Armstrong Aerospace Medical Research Lab AF Human Resources Lab AF Drug Testing Lab AF Occupational & Environmental Health Lab

Rome Air Development Center Griffiss AFB, NY

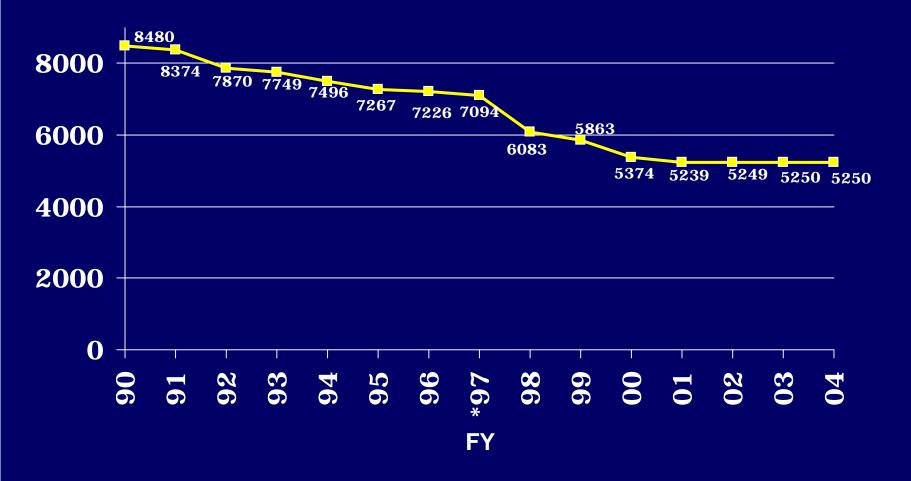


Rome Lab
Griffiss AFB

Air Force Research Laboratory

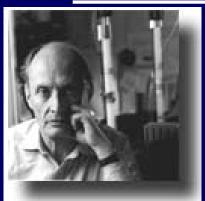


S&T Funding -- All Sources (CY01\$)



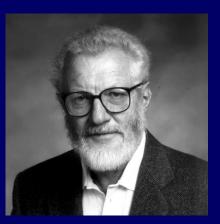
As of: EOM Sep 00

Authorized Manning by Fiscal Year



^{*} FY97 was the stand-up of AFRL. FY97 and prior includes authorizations of the 4 separate Labs, HQ/ST Staff and PEC 8 medical authorizations. Medical authorizations transferred d back to HSW between FY97/98.

Nobel Laureates for 2000



Dr. Paul Greengard, Rockefeller University Nobel Prize in Medicine

- For discoveries of synaptic transmission mechanisms between human nerve cells
- AF S&T supported since 1984

Dr. Alan J. Heeger, *UC Santa Barbara* **Nobel Prize in Chemistry**

- For research on electricity-conducting plastic
- AF S&T supported since 1988

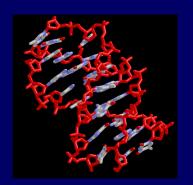
Dr. Herbert Kroemer, *UC Santa Barbara* **Nobel Prize in Physics**

- For research on microelectronic components
- AF S&T supported since 1995

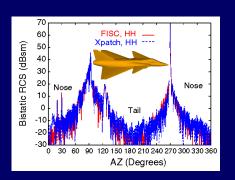
Agenda

- Long Range Pay-off of S&T
- Update on AFRL
- Cutting Edge Technologies
- Closing Thoughts

Office of Scientific Research Technology Thrusts


Aerospace and Materials Sciences

Chemistry and Life Sciences


Physics and Electronics

Mathematics and Space Sciences

Core Sub-thrusts

- Hypersonics
- Advanced Materials
- Space Propulsion
- Nanotechnology
- Bioenvironmental Science
- Biomimetics
- Molecular Dynamics
- Photonic, Plasma, & Imaging Physics
- Space Electronics
 - Optoelectronics
- Computational Modeling
- Space Physics
- Electromagnetics

- High Cycle Fatigue
- Smart Structures
- Plasma Aerodynamics
- Shape Memory Alloys

- IR Biosensors
- All-Nitrogen Rocket Fuel
- Agile Laser Protection

- Radiation Hardened Electronics
- Microsatellites
- Isomeric Energy Storage
- Identifying Hard Targets
- Quantum Computers
- Targeting Through

Basic Research & Enabling Technologies

Munitions Directorate Technology Thrusts

Defeat Fixed Targets

Defeat Mobile Targets

Defeat Air Targets

Application Sub-thrusts

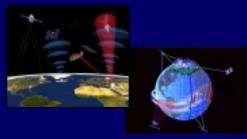
- All Weather Precision Guidance
- Range Extension
- Agent Defeat
- Smart & Multi Event Fuzing
- High Speed Penetration
- Antijam GPS

- ATR Development
- Directional Warheads
- High Resolution LADAR
- Smart Sensor Web
- Propulsion Integration
- Smart Rack

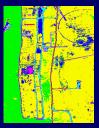
- All Aspect Intercept
- Directional Warhead
- Guidance Integrated Fuzing
- Jet Reaction Control

- Advanced Energetics
- High Strain Rate Material
- Nano Particles
- Hydro-code Modeling & Simulation

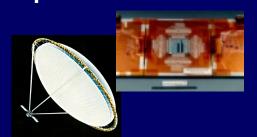
- Self Forging Penetrators
- Cooperative Attack
- Solid State LASER


- Optimal Guidance
- High Angle of Attack
- Target Imaging
- Burst Point Fuzing

Space Vehicles Directorate Technology Thrusts


Space Systems Protection

- Space Hazards Warning & Mitigation
- Ionspheric Specification & Forecasting
- Background Clutter Prediction, Detection & Decision Aids
- Threat Warning & Attack Reporting


Spacecraft Payloads

- Rad Hard Microelectronics
- Advanced Packaging
- Space IR Technologies
- Space Antenna Technologies
- HSI Technologies
- Modeling & Simulation
- Intelligent Satellite Systems

Spacecraft Vehicles

- Spacecraft Structures
- Launch Vehicle Structures
- Controls & Mechanisms
- Space Power
- Cryocoolers
- Small Sat Integration & Ground Support Tech
- Microsatellite Concepts & Technologies

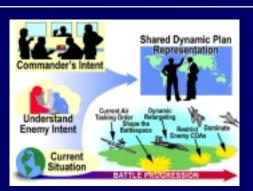
Integrated Space Technology Demonstrations

Warfighter-1
XSS-11
Ballistic Missile Technology

Space Maneuver Vehicle
Upper Stage Flight Experiment
Low Cost Launch Vehicle Technology (Scorpius)
MicroSat Technology (XSS-10)

Information Directorate Technology Thrusts

Global Awareness


Provide consistent, integrated battlespace information on demand, tailored to the needs of individual warfighters

- Automated exploitation tools
- Fusion of information into single consistent operating picture providing situational awareness & impact assessment
- Affordable global information base supporting real-time exploitation & fusion

Dynamic Planning & Execution


Provide commanders with the ability to shape and control the pace and phasing of engagements, exploiting global awareness and global information exchange capabilities

- Predictive planning & preemption
- Integrated force mgmt & execution
- Real time sensor to shooter operations
- Collaborative, distributed real-time mission planning, training, & battlespace simulation

Global Information Exchange

Assure information anywhere, anytime, for any mission through adaptable and scaleable information systems

- · Seamless, collaborative workspaces
- x1000 increase in global comm to aircraft capability
- Continuous in-transit visibility
- World-wide information -- on demand
- Information Warfare -- protect, detect, react
- Assured & survivable networking

Directed Energy Directorate Technology Thrusts

Lasers

Advanced Optics & Imaging

HPM

RELAY MIRRORS

COMPENSTION

- Tactical HELs
- A/C Protection
- Targeting Lasers

Application Sub-thrusts

- Large Optics
- Relay Mirrors
- Remote Optical Sensing
- **GBL Beam Control**
- **ABL Target Track**
- **Space Situational Awareness**
- Non-Lethal
- **Electronic Attack**
- A/C Protection

- Solid-State Lasers
- Chem Lasers
- Tunable Lasers
- Effects/ Modeling
- Optical Coatings
- Membrane Mirrors
- Large Apertures
- **Innovative Algorithms**
- **Target & Modeling**
 - **Adaptive Optics**
 - **Non-Linear Optics**

- Sources
- A/C Integration
- Effects/Modeling
- **Antennas**

17

Basic Research & Enabling Technologies

Air Vehicles Directorate Technology Thrusts

Sustainment

Technology insertion to enable today's fleet to meet tomorrow's warfighter needs

Aging Fleet

Over 75% of military aircraft exceed 20 years service, many to operate for over 50 years. Result: Huge O&M costs; big cause - cracking and corrosion

Unmanned Air Vehicles

Technologies to enable routine operation of high payoff UAV alternatives across the full spectrum of warfare

UAV Alternatives

Aggressively pursue emerging technologies to develop, field, & operate UAVs for military roles across the spectrum of warfare ...based on cost, capability, reliability, and suitability.

Space Access and Future Strike Technologies

Affordable space access and quick reaction transatmospheric capability

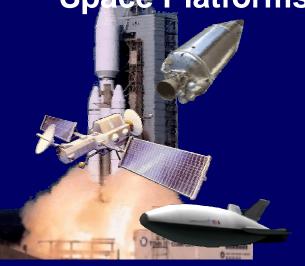
Assured Access to Space

- Affordable spacelift
- Aircraft-like operations

Future Strike Technologies

Capable of launching from CONUS and reaching global targets within hours

Propulsion Directorate Technology Thrusts



- Fighters / Bombers / **Transports**
- Unmanned Aerial Vehicles
- Space Boosters
- **Orbit Transfer**
- **Spacecraft**

- Air-Launched Missiles
- **Strategic Missiles**
- **Directed Energy**

- Gas Turbines
- Secondary Power
- Fuels and Lubrication

- **Liquid & Solid Rockets**
- **Electric Propulsion**
- **Power & Thermal Mgmt**
- Combustion Basic Research & Enabling Technologies
- Solid Rockets
- **Scramjets**
- **Megawatt Power**
 - Nozzle Plumes

Human Effectiveness Directorate Technology Thrusts

Warfighter Training

Crew System Interface

Bioeffects & Protection

Deployment & Sustainment

Core Sub-thrust

- KnowledgeRepresentation
- Distributed MissionTraining
- Night Vision Training
- Information SystemsTraining

- Visual Displays
- Aural Displays & Bioacoustics
- InformationAnalysis &Exploitation
- InterfaceTechnology
- Crew SystemsIntegration

- Optical RadiationBioeffects
- Radio FrequencyRadiation
- BiomechanismsModeling
- Aircrew Protection

- Logistics
- Toxicology
- Chemical & Biological Defense*
- Sustained CrewOperations

*DoD PE

Materials & Manufacturing Technology Thrusts

M&P for Structures and Propulsion

M&P for Sensors and Survivability

M&P for Sustainment and Deployment

Metals

- Composites
- Ceramics
- High Cycle Fatigue
- Composites Affordability
- Thermal Protection
- IHPTET Materials
- IHPRPT Materials

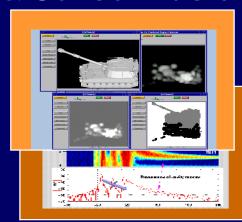
Core Sub-Thrusts

- Sensor Materials
- Laser Hardened Materials
- Polymers
- IR Sensor Materials
- Laser Protective Coatings& Devices
- Power Generation
- Conducting Polymers

- NDE
- Systems Support
- AEF Technologies
- Coatings
- Aging Systems NDE
- Deployed Base Support
- Failure Analysis
- Force Protection
- LO Maintainability

Basic Research & Enabling Technologies

Sensors Directorate Technology Thrusts


Radio Frequency Sensors & Countermeasures

Electro-Optical Sensors & Countermeasures

Automatic Target Recognition & Sensor Fusion

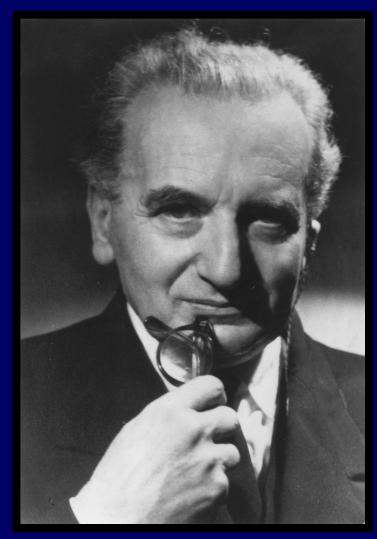
Application Sub-thrusts

Target Detection & ID

Threat Warning & CM

Receivers

- Radar
- Assured Reference
- Electronic Warfare
- Apertures
- Algorithms & **Phenomenology**
- Transceivers Algorithms &
- Digital Receivers & Exciters Phenomenology Basic Research & Enabling Technologies


- Space & Air Sensor ATR
- Precision ID & Location
- ATR Spiral Development
- Innovative Algorithms
- Target & Phenomenology **Modeling**
- Evaluation Science

Agenda

- Long Range Pay-off of S&T
- Update on AFRL
- Cutting Edge Technologies
- Closing Thoughts

"The first essential of airpower is pre-eminence in research."

GENERAL H. H. ARNOLD

"Science is the key to air supremacy."

DR. THEODORE VAN KARMAN

